说中子俘获过程,能不能给出解释呢?
经过仔细分析,考恩和同事们把这种可能性也排除了。他们还考虑过不同同位素的物理分选过程:较重的原子移动速度比较轻的原子稍慢一些,有时它们就会相互分离开来。
铀浓缩装置就是利用这个过程来生产反应堆燃料的,不过需要相当高的技术水平才能建造出这样的工业设备。即使自然界能够奇迹般地在微观尺度上创造出类似的“装置”,仍然无法解释我们所研究的磷酸铝颗粒中混合在一起的氙同位素比例。
举例来说,如果确实发生过物理分选的话,考虑到现有的氙132的含量,氙136的缺失,应该是氙134(比氙132重2个原子质量单位)的两倍。但实际上,并没有看到那样的模式。
绞尽脑汁之后,考恩他们终于想通了产生氙同位素构成比例异常的原因。其所测量的所有氙同位素都不是铀裂变的直接产物。相反,它们是放射性碘同位素衰变的产物,碘则由放射性碲衰变而来,而碲又由别的元素衰变产生,这是一个著名的核反应序列,最终的产物才是稳定的氙气。
突破点在于,考恩这些核物理科学家意识到奥克罗样品中不同的氙同位素产生于不同的时期,它们所遵循的时间表由它们的母元素碘和再上一代的元素碲的半衰期所决定。
某种特定的放射性前体存在的时间越长,它们形成氙的过程就被拖延得越久。
例如,在奥克罗的自持裂变反应开始后,氙136仅过了大约1分钟就开始生成。一个小时后,稍轻一些的稳定同位素氙134出现。
接下来,在裂变开始的若干天后,氙132和氙131登场亮相;最终,几百万年之后,氙129才得以形成。此时,核链式反应早已停止很久了。
如果奥克罗矿脉一直处于封闭状态,那么在它的天然反应堆运转期间积聚起来的氙气,就会保持核裂变所产生的正常同位素比例,并一直保存至今。
但是,科学家没有理由认为,这个系统会是封闭的。实际上,有充分的原因让人猜想,它不是封闭的。奥克罗反应堆可以通过某种方式自行调节核反应,这个简单的事实提供了间接的证据。
最可能的调节机制与地下水的活动有关:当温度达到某个临界点时,水会被煮沸蒸发掉。水在核链式反应中起到了中子慢化剂的作用,如果水不见了,核链式反应就会暂时停止。只有当温度下降,足够的地下水再次渗入之后,反应区域才会继续开始发生裂变。
经过仔细分析,考恩和同事们把这种可能性也排除了。他们还考虑过不同同位素的物理分选过程:较重的原子移动速度比较轻的原子稍慢一些,有时它们就会相互分离开来。
铀浓缩装置就是利用这个过程来生产反应堆燃料的,不过需要相当高的技术水平才能建造出这样的工业设备。即使自然界能够奇迹般地在微观尺度上创造出类似的“装置”,仍然无法解释我们所研究的磷酸铝颗粒中混合在一起的氙同位素比例。
举例来说,如果确实发生过物理分选的话,考虑到现有的氙132的含量,氙136的缺失,应该是氙134(比氙132重2个原子质量单位)的两倍。但实际上,并没有看到那样的模式。
绞尽脑汁之后,考恩他们终于想通了产生氙同位素构成比例异常的原因。其所测量的所有氙同位素都不是铀裂变的直接产物。相反,它们是放射性碘同位素衰变的产物,碘则由放射性碲衰变而来,而碲又由别的元素衰变产生,这是一个著名的核反应序列,最终的产物才是稳定的氙气。
突破点在于,考恩这些核物理科学家意识到奥克罗样品中不同的氙同位素产生于不同的时期,它们所遵循的时间表由它们的母元素碘和再上一代的元素碲的半衰期所决定。
某种特定的放射性前体存在的时间越长,它们形成氙的过程就被拖延得越久。
例如,在奥克罗的自持裂变反应开始后,氙136仅过了大约1分钟就开始生成。一个小时后,稍轻一些的稳定同位素氙134出现。
接下来,在裂变开始的若干天后,氙132和氙131登场亮相;最终,几百万年之后,氙129才得以形成。此时,核链式反应早已停止很久了。
如果奥克罗矿脉一直处于封闭状态,那么在它的天然反应堆运转期间积聚起来的氙气,就会保持核裂变所产生的正常同位素比例,并一直保存至今。
但是,科学家没有理由认为,这个系统会是封闭的。实际上,有充分的原因让人猜想,它不是封闭的。奥克罗反应堆可以通过某种方式自行调节核反应,这个简单的事实提供了间接的证据。
最可能的调节机制与地下水的活动有关:当温度达到某个临界点时,水会被煮沸蒸发掉。水在核链式反应中起到了中子慢化剂的作用,如果水不见了,核链式反应就会暂时停止。只有当温度下降,足够的地下水再次渗入之后,反应区域才会继续开始发生裂变。
本章未完,请点击下一页继续阅读》》